

Introduction

This article describes what biofilms are and the important roles they appear to play in disrupting wound healing. In addition, it discusses potential interventions aimed at removing/reducing biofilms and preventing their reformation in wounds.

Authors: Phillips PL, Wolcott RD, Fletcher J, Schultz GS Full author details can be found on page 5.

What are biofilms?

Biofilms are complex microbial communities containing bacteria and fungi. The microorganisms synthesise and secrete a protective matrix that attaches the biofilm firmly to a living or non-living surface¹.

Biofilms are dynamic heterogeneous communities that are continuously changing². They may consist of a single bacterial or fungal species, or more commonly, may be polymicrobial, ie contain multiple diverse species^{3,4}. At the most basic level a biofilm can be described as bacteria embedded in a thick, slimy barrier of sugars and proteins. The biofilm barrier protects the microorganisms from external threats.

How are biofilms relevant to wounds?

Biofilms have long been known to form on surfaces of medical devices, such as urinary catheters, endotracheal and tympanostomy tubes, orthopaedic and breast implants, contact lenses, intrauterine devices (IUDs) and sutures^{5,6}. They are a major contributor to diseases that are characterised by an underlying bacterial infection and chronic inflammation, eg periodontal disease, cystic fibrosis, chronic acne and osteomyelitis^{2,5,7}.

Biofilms are also found in wounds and are suspected to delay healing in some. Electron microscopy of biopsies from chronic wounds found that 60% of the specimens contained biofilm structures in comparison with only 6% of biopsies from acute wounds⁸. Since biofilms are reported to be a major factor contributing to multiple chronic inflammatory diseases, it is likely that almost all chronic wounds have biofilm communities on at least part of the wound bed.

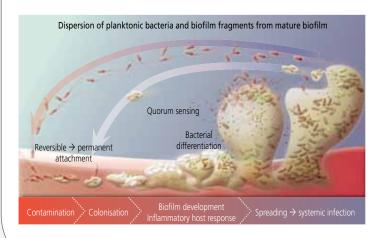
How do biofilms form? Stage one: reversible surface attachment

Microorganisms are commonly perceived to be free-floating and solitary (ie planktonic). However, under natural conditions most

microorganisms tend to attach to surfaces and eventually form biofilms^{1,9} (Figure 1). The initial attachment is reversible.

Stage two: permanent surface attachment

As the bacteria multiply, they become more firmly attached (sessile) and differentiate, changing gene expression patterns in ways that promote survival^{6,9}. This is usually the result of a type of bacterial communication known as quorum sensing¹⁰ (see glossary page 5).


Stage three: slimy protective matrix/biofilm

Once firmly attached, the bacteria begin to secrete a surrounding matrix known as extracellular polymeric substance (EPS)¹¹. This is a protective matrix or 'slime'. Small bacterial colonies then form an initial biofilm^{2,6}.

The exact composition of EPS varies according to the microorganisms present, but generally consists of polysaccharides, proteins, glycolipids and bacterial DNA^{2,9,11}. Bacterial DNA released by living or dead bacteria is thought to provide an important structural component for biofilm EPS matrix¹². Various secreted proteins and enzymes help the biofilm to become firmly attached to the wound bed⁹.

Fully mature biofilms continuously shed planktonic bacteria, microcolonies and fragments of biofilm, which can disperse and attach to other parts of the wound bed or to other wounds, forming new biofilm colonies^{5,6}.

Figure 1 Schematic representation of polymicrobial biofilm formation (adapted from¹³)

Biofilms made easy

Living in the mixed microbial communities typical of biofilms allows microorganisms to share their individual 'skills and abilities' for the survival of the group^{14,15}. This gives them many protective advantages.

How quickly do biofilms form?

Experimental laboratory studies^{16,17} have shown that planktonic bacteria, eg *Staphylococci, Streptococci, Pseudomonas* and *Escherichia coli*, typically:

- attach within minutes
- form strongly attached microcolonies within 2–4 hours
- develop initial EPS and become increasingly tolerant to biocides, eg antibiotics, antiseptics and disinfectants, within 6-12 hours
- evolve into fully mature biofilm colonies that are extremely resistant to biocides and shed planktonic bacteria within 2–4 days, depending on the species and growth conditions
- rapidly recover from mechanical disruption and reform mature biofilm within 24 hours.

This suggests that serial wound debridement/disruption could provide only a brief window of opportunity, ie less than 24 hours, in which antimicrobial treatments are more effective in reducing both planktonic and biofilm microorganisms in wounds.

Why have we just found out about biofilms in wounds?

It is only relatively recently that biofilms have been generally accepted as a factor that can contribute to delay in healing in skin wounds^{7,8}.

Chronic skin wounds often lack overt clinical signs of infection and often have low bacterial burdens as measured by standard clinical microbiology laboratory assays¹⁸. However, standard clinical microbiology tests are optimised to culture planktonic bacteria, and do not adequately measure biofilm bacteria, which require special cultivation techniques^{19,20}.

The term critical colonisation was developed in an attempt to acknowledge the concept that bacteria play a critical role in the failure of wounds that do not have obvious infection to heal²¹. In reality, the concept of critical colonisation/localised infection probably describes the presence of a biofilm in a chronic wound.

Can we see biofilms?

Biofilms are microscopic structures. However, in some situations, when allowed to grow undisturbed for an extended period of time, biofilms can become thick enough to be seen with the naked eye. For example, tooth plaque can accumulate and become clearly visible within a day. Some bacteria in biofilm phenotype produce pigments, which may aid visual detection of biofilm. For example, Pseudomonas aeruginosa produces the quorum sensing molecule pyocyanin, which is green, when in biofilm phenotype²². Even so, green discolouration of a wound is not always indicative of a Pseudomonas biofilm.

Can biofilms be distinguished from slough?

Wound slough has been described as a viscous, yellow, and relatively opaque layer on wound beds, while biofilm found in wounds has been suggested to appear more gel-like and shiny²³. Nevertheless, there may be a link between biofilms and slough. Biofilms stimulate inflammation, which increases vascular permeability and production of wound exudate and the build up of fibrin slough²⁴. Therefore, slough may indicate the presence of

biofilm in a wound. However, such a link between slough and biofilms in chronic wounds is yet to be fully defined.

Currently, the most reliable method to confirm the presence of microbial biofilm is specialised microscopy, eg confocal laser scanning microscopy.

How do mature biofilms 'protect' bacteria?

Biofilms greatly enhance the tolerance of microorganisms embedded in the matrix to the immune system, antimicrobials and environmental stresses (eg nutritional or oxygen limitation). This tolerance may approach complete resistance to factors that would easily kill these same microbes when growing in an unprotected, planktonic state^{9,25}.

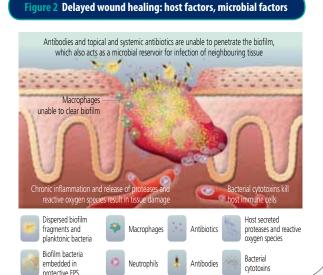
Blocking

One simple way that EPS protects microbes is by preventing large molecules (eg antibodies) and inflammatory cells from penetrating deeply into the biofilm matrix. Mature biofilm may also act as a diffusion barrier even to small molecules like antimicrobial agents²⁶.

Mutual protection

Another unique property of polymicrobial biofilms is the cooperative protective effects that different species of bacteria can provide to each other. For example, antibiotic resistant bacteria may secrete protective enzymes or antibiotic binding proteins that can protect neighbouring non-antibiotic resistant bacteria in a biofilm², as well as transfer genes to other bacteria that confer antibiotic resistance, even between different species²⁷. Studies have also shown that the specific characteristics of the EPS of biofilms established by one species can play a significant role in the ability of other species to attach and incorporate into an existing biofilm²⁸.

Hibernation (quiescent bacteria)


Another survival strategy that many bacteria in biofilms have developed is for a subpopulation to become metabolically quiescent, ie to hibernate^{2,29,30}. Because bacteria need to be metabolically active for antibiotics to act, hibernating bacteria in biofilms are unaffected by antibiotics that would normally kill active bacteria^{2,31}.

Research has shown that the lowest concentration required to kill or eliminate bacterial biofilm for many antibiotics actually exceeds the maximum prescription levels for the antibiotics³¹⁻³⁴. Thus, standard oral doses of those antibiotics, which effectively kill the normally susceptible bacteria when grown planktonically in a clinical laboratory, may have little or no antimicrobial effect on the same type of bacteria in biofilm form in the patient.

How do biofilms delay wound healing?

Biofilms stimulate a chronic inflammatory response in an attempt to rid the wound of the biofilm (Figure 2). This response results in abundant neutrophils and macrophages surrounding biofilms. These inflammatory cells secrete high levels of reactive oxygen species (ROS) and proteases (matrix metalloproteinases (MMPs) and elastase). The proteases can help to break down the attachments between biofilms and the tissue, dislodging the biofilms from the wound³⁵. However, the ROS and proteases also damage normal and healing tissues, proteins and immune cells and have 'off target' effects that impair healing.

The chronic inflammatory response is not always successful in removing the biofilm and it has been hypothesised that

the response is in the interest of the biofilm. By inducing an ineffective inflammatory response, the biofilm protects the microorganisms it contains and increases exudate production, which provides a source of nutrition and helps to perpetuate the biofilm³⁶.

Are there conditions that predispose a wound to develop a biofilm?

It is not known whether there are conditions that predispose wounds to developing a biofilm. However, general conditions that impair the immune system or reduce the effectiveness of antibiotic drugs may favour the development of biofilms in wounds. These include tissue ischaemia or necrosis, poor nutrition and comorbidities that impair immune function.

What are the principles of managing biofilms?

Even when a wound is strongly suspected of containing a biofilm, there is no one-step solution for treatment. A proactive approach using a combination strategy based on elements of wound bed preparation³⁷ may be helpful (Figure 3) and aims to:

- reduce the biofilm burden
- prevent reconstitution of the biofilm.

This approach is sometimes called 'biofilm-based wound care'.

How can biofilm burden be reduced?

Evidence to date suggests that physical removal, ie debridement or vigorous physical cleansing, are the best methods for reducing biofilm burden³⁷.

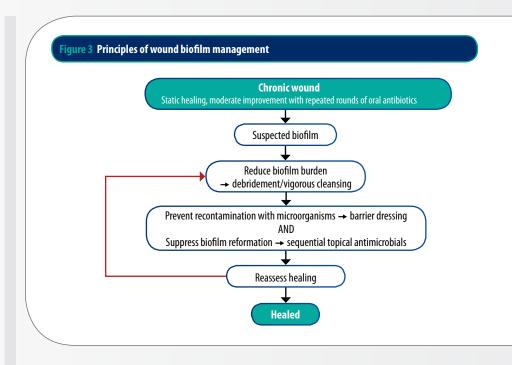
Debridement involves the removal of necrotic and contaminated tissue and matter from a wound so that healing can occur. There are numerous methods of debridement, ranging from sharp debridement to techniques usually thought of as wound cleansing, eg wound irrigation^{38,39}. Choice of method of debridement or cleansing by a clinician will be heavily influenced by knowledge, training and competency, and must take into account safety and ethical considerations⁴⁰.

Research into the management of wound biofilms has so far used sharp debridement and ultrasonic debridement with the aim of opening all tunnels and removing undermining, all devitalised tissue, slough and discoloured or soft bone⁴¹. However, because of the difficulties of visualising biofilms, the impact of debridement and the best method of debridement for biofilm management is not yet clear.

Frequency of debridement/ cleansing

No form of debridement or cleansing is likely to remove all of a biofilm, and so any remaining bacteria/biofilm has the potential to regrow and form mature biofilm within a matter of days. As a result it is suggested that debridement in a wound suspected of containing biofilm needs to be performed regularly. As yet, the ideal frequency of debridement is not clear; in a study of patients with critical limb ischaemia, debridement was weekly⁴¹.

Some products are suggested to have additional roles in wound cleansing by aiding removal of bacteria and debris, and disturbing biofilm. A promising technology, for example, lies in the surfactant properties of some polyhexamethylene biguanide (polyhexanide or PHMB) wound cleansing formulations (eg Prontosan®). The surfactant component (betaine) of the cleansing agent reduces surface tension and aids removal of debris and bacteria by irrigation^{42,43}.


If a wound is still not progressing following regular debridement with one method, it may be necessary to consider a more 'aggressive' form of debridement with specialist referral as appropriate.

How can biofilm reconstitution be prevented?

Biofilm may reform in a wound by:

- growth of fragments left behind following debridement/cleansing
- spread of planktonic bacteria released from the remaining biofilm
- growth of biofilm by newly introduced microorganisms.

Principles involved in preventing reconstitution of the biofilm include prevention of further wound

contamination (ie the use of dressings), and the use of antimicrobial agents to kill planktonic microorganisms.

The polymicrobial nature of many biofilms indicates that a topical broad spectrum antimicrobial that kills rather than inhibits microorganisms is the most appropriate. Details of the effects of antimicrobials on biofilm reformation are not yet known. However, the broad spectrum microbicidal antimicrobials most widely used in wound care are silver, iodine, honey and PHMB. These are available in a range of formulations.

An emerging principle for the use of topical antimicrobials is changing to a different antimicrobial if there is lack of progress. As yet, there is no evidence to suggest which antimicrobial is preferable first line; choice will be dependent on how the antimicrobial will be used. For example, is it to be left in place for several days? If so, a sustained release formulation will be required to cover the period of use. Patient sensitivities/ allergies must also be taken into account.

How will I know when the biofilm has gone?

The lack of definitive signs and readily available laboratory tests for biofilms means that it is not possible to state categorically when a wound has become biofilm free. The clearest clinical indicator is likely to be healing progression, along with a reduction in the production of exudate and slough.

Until clear guidance becomes available, clinical judgement will be required to decide when and how to modify the management of wounds with suspected biofilm. For example, when healing is progressing well, it may be appropriate to change debridement method or reduce debridement frequency, and/or reconsider whether the use of a topical antimicrobial is necessary.

Additional important concepts include frequent wound reassessment and a holistic approach to patient health to boost the immune system and to promote wound healing.

Future developments

There is a need to develop methods or devices to quickly detect the presence of biofilm before and after selected treatments. Initially, this would help guide researchers and healthcare providers to develop effective wound management strategies. Later, it would aid monitoring of treatment progress.

Both currently available and novel antimicrobial agents and treatment methods are being scrutinised for their efficacy against biofilm, both as biofilm eliminators and biofilm inhibitors. For example, recent studies of the antimicrobial efficacy of various wound

dressings against mature *Pseudomonas aeruginosa* biofilm cultured on porcine skin has revealed significant biofilm eliminating properties of cadexomer iodine⁴⁴. However, the complex ever changing polymicrobial nature of biofilm, complicated by biofilm bacterial phenotypic heterogeneity means that antibiofilm efficacy of agents must be verified on a patient by patient basis.

How do we explain biofilms to patients?

Patients can be reassured that biofilms can be effectively treated by

a combination of debridement and/ or cleansing to remove the biofilms, application of dressings to block new bacteria from reaching the wound, and the use of antimicrobials to kill bacteria left in the wound bed. Patients should be told that treatment needs to be repeated and regular because biofilms can reform within a day and prevent wound healing.

Supported by an educational grant from B. Braun. The views expressed in this 'Made Easy' section do not necessarily reflect those of B. Braun. Prontosan® is a registered trademark of B.Braun.

Glossary	
Biofilm phenotype	Biofilm phenotype microorganisms express genes optimal for developing an attached community embedded in a protective self-secreted 'slime' matrix and surviving environmental stresses.
Commensal	A microorganism that lives on/in a tissue, usually without causing disease.
Extracellular polymeric substance (EPS)	The 'slime' produced by microorganisms in a biofilm comprising polysaccharides, proteins, glycolipids and bacterial DNA; it protects the microorganisms living in the biofilm from the host's immune system and antimicrobial agents.
Phenotype	The characteristics of a microorganism that result from an interaction between the environment and the microorganism's genes.
Planktonic	Refers to free-floating microorganisms that are expressing genes optimal for single, unattached growth.
Quorum sensing	A mechanism used by microorganisms to communicate within and between bacterial species. It is used to detect and respond to changes in the environment (including the presence of other microbes or nutritional limitations). Quorum sensing induces changes in bacterial gene expression that aim to promote survival of the microorganisms.
Sessile	Microorganisms that are firmly attached to a surface by means of receptors and/or proteins called adhesins.

Author details

PL Phillips¹, RD Wolcott², J Fletcher³, GS Schultz⁴.

- 1. Postdoctoral Fellow, Institute for Wound Research, Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA
- 2. Medical Director, Southwest Regional Wound Care Center, Lubbock, Texas, USA
- Principal Lecturer, School of Nursing, Midwifery and Social Work, University of Hertfordshire, Hatfield, UK and Senior Professional Tutor, Department of Dermatology and Wound Healing, School of Medicine, Cardiff University, Cardiff, UK
- **4.** Professor, Institute for Wound Research, Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA

With thanks to the Bedfordshire and Hertfordshire Tissue Viability Nurses' Forum.

Summary

Bacterial biofilms are known to contribute to numerous chronic inflammatory diseases and recent evidence suggests that biofilms also play important roles in impairing healing in chronic wounds. Biofilms have high levels of tolerance to antibodies, antibiotics, disinfectants and phagocytic inflammatory cells. Current understanding of biofilms suggests that management of suspected wound biofilm should involve frequent debridement along with interventions such as dressings and antimicrobials to prevent recontamination of the wound and suppress biofilm reformation.

To cite this publication

Phillips PL, Wolcott RD, Fletcher J, Schultz GS. Biofilms Made Easy. *Wounds International* 2010; 1(3): Available from http://www.woundsinternational.com

References

- Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. *Annu Rev Microbiol* 2002; 56: 187-209.
- Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. *Cell Microbiol* 2009; 11(7): 1034-43.
- Dowd SE, Sun Y, Secor PR, et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 2008; 8(1): 43.
- Trengove NJ, Stacey MC, McGechie DF, Mata S. Qualitative bacteriology and leg ulcer healing. J Wound Care 1996; 5(6): 277-80.
- Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284(5418): 1318-22.
- Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15(2): 167-93.
- Wolcott RD, Rhoads DD, Bennett ME, et al. Chronic wounds and the medical biofilm paradigm. J Wound Care 2010; 19(2): 45-50, 52-53.
- 8. James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds. *Wound Repair* Regen 2008;16(1): 37-44.
- Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the "house of biofilm cells". J Bacteriol 2007; 189(22): 7945-47.
- Horswill AR, Stoodley P, Stewart PS, Parsek MR. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 2007; 387(2): 371-80.
- 11. Sutherland I. Biofilm exopolysaccharides: a strong and sticky framework. *Microbiology* 2001; 147(Pt 1): 3-9.
- Rice KC, Mann EE, Endres JL, et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. *Proc Natl Acad Sci USA* 2007; 104(19): 8113-18.
- 13. Phillips P, Sampson E, Yang Q, et al. Bacterial biofilms in wounds. *Wound Healing Southern Africa* 2008; 1(2): 10-12.
- 14. Xavier JB, Foster KR. Cooperation and conflict in microbial biofilms. *Proc Natl Acad Sci USA* 2007; 104(3): 876-81.
- 15. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. *Nat Rev Microbiol* 2010; 8(1): 15-25.

- Costerton JW. The etiology and persistence of cryptic bacterial infections: a hypothesis. Rev Infect Dis 1984; 6 Suppl 3: S608-16.
- Bester E, Kroukamp O, Wolfaardt GM, et al. Metabolic differentiation in biofilms as indicated by carbon dioxide production rates. Appl Environ Microbiol 2010; 76(4): 1189-97
- World Union of Wound Healing Societies (WUWHS). Principles of best practice: Wound infection in clinical practice. An international consensus. London: MEP Ltd, 2008.
- 19. Kaeberlein T, Lewis K, Epstein SS. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. *Science* 2002; 296(5570): 1127-29.
- Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 2008; 16(1): 2-10.
- 21. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis 2004; 17(2): 91-96.
- Dietrich LE, Price-Whelan A, Petersen A, et al. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. *Mol Microbiol* 2006; 61(5): 1308-21.
- 23. Hurlow J, Bowler PG. Clinical experience with wound biofilm and management: a case series. Ostomy Wound Manage 2009; 55(4): 38-49.
- 24. Wolcott RD, Rhoads DD, Dowd SE. Biofilms and chronic wound inflammation. *J Wound Care* 2008; 17(8): 333-41.
- 25. Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. *Annu Rev Microbiol* 1995; 49: 711-45.
- 26. Guiot E, Georges P, Brun A, et al. Heterogeneity of diffusion inside microbial biofilms determined by fluorescence correlation spectroscopy under two-photon excitation. *Photochemistry and Photobiology* 2002; 75(6): 570-79.
- Weigel LM, Donlan RM, Shin DH, et al. Highlevel vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. *Antimicrob Agents Chemother* 2007; 51(1): 231-38.
- Liu Y, Li J. Role of Pseudomonas aeruginosa biofilm in the initial adhesion, growth and detachment of Escherichia coli in porous media. Environ Sci Technol 2008; 42(2): 443-49.
- Davies DG, Parsek MR, Pearson JP, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. *Science* 1998; 280(5361): 295-98.
- 30. Lewis K. Persister cells, dormancy and

- infectious disease. *Nat Rev Microbiol* 2007; 5(1): 48-56.
- Brooun A, Liu S, Lewis K. A doseresponse study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2000; 44(3): 640-46.
- 32. Koseoglu H, Aslan G, Esen N, et al. Ultrastructural stages of biofilm development of Escherichia coli on urethral catheters and effects of antibiotics on biofilm formation. *Urology* 2006; 68(5): 942-46.
- Olson ME, Ceri H, Morck DW, et al. Biofilm bacteria: formation and comparative susceptibility to antibiotics. *Can J Vet Res* 2002; 66(2): 86-92.
- 34. Conley J, Olson ME, Cook LS, et al. Biofilm formation by group a streptococci: is there a relationship with treatment failure? *J Clin Microbiol* 2003; 41(9): 4043-48.
- European Wound Management Association (EWMA). Position Document: Wound Bed Preparation in Practice. London: MEP Ltd, 2004.
- Lawrence JR, Swerhone GD, Kuhlicke U, Neu TR. In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Can J Microbiol 2007; 53(3): 450-58.
- Wolcott RD, Kennedy JP, Dowd SE. Regular debridement is the main tool for maintaining a healthy wound bed in most chronic wounds. J Wound Care 2009; 18(2): 54-56.
- 38. Vowden KR, Vowden P. Wound debridement, Part 1: non-sharp techniques. *J Wound Care* 1999; 8(5): 237-40.
- Vowden KR, Vowden P. Wound debridement, Part 2: sharp techniques. J Wound Care 1999; 8(6): 291-94.
- O'Brien M. Debridement: ethical, legal and practical considerations. Br J Community Nurs 2003; 23-25.
- 41. Wolcott RD, Rhoads DD. A study of biofilmbased wound management in subjects with critical limb ischaemia. *J Wound Care* 2008; 17(4): 145-55.
- 42. Kaehn K, Eberlein T. In-vitro test for comparing the efficacy of wound rinsing solutions. *Br J Nurs* 2009; 18(11); 54-10.
- Andriessen AE, Eberlein T. Assessment of a wound cleansing solution in the treatment of problem wounds. Wounds 2008; 20(6): 171-75.
- 44. Phillips PL, Yang Q, Sampson E, Schultz G. Effects of antimicrobial agents on an in vitro biofilm model of skin wounds. *Advances in Wound Care* 2010; 1: 299-304.

Further reading

Bryers JD. Medical Biofilms. Biotechnology and Bioengineering 2008: 100: 1-18.

Davies D. Understanding biofilm resistance to antibacterial agents. Nature 2003; 2: 114-22

Costerton JW, Stewart PS. Battling biofilms. Scientific American 2001; 285: 74-81.

Gibson D, Cullen B, Legerstee R, et al. MMPs Made Easy. Wounds International 2009; 1(1). Available from http://www.woundsinternational.com/article.php?issueid=1&contentid=123&articleid=21.